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Abstract We introduce a software generator for a class of colored (self-correlated) and non-Gaussian noise, whose
statistics and spectrum depend on two parameters, q and τ. Inspired by Tsallis’ nonextensive formulation of statis-
tical physics, the so-called q-distribution is a handy source of self-correlated noise for a large range of applications.
The q-noise—which tends smoothly for q = 1 to Ornstein–Uhlenbeck noise with autocorrelation τ—is generated
via a stochastic differential equation, using the Heun method (a second order Runge–Kutta type integration scheme).
The algorithm is implemented as a stand-alone library in C++, and is made available as open source in the Github
repository. Noise’ statistics can be specified handily; by only varying parameter q: it has compact support for q < 1
(sub-Gaussian regime) and finite variance up to q = 5/3 (supra-Gaussian regime). Once q is fixed, noise’ autocorrela-
tion can be tuned independently by means of parameter τ. The presented qNoise generator provides a readily tool to
modeling wide range of real-world noise types, and is suitable to study the effects of correlation and deviations from
the normal distribution in systems of stochastic differential equations, key to understand system dynamics in numer-
ous applications. The effect of noises’ statistics on the response of a range of nonlinear systems is briefly discussed.
In many of these examples, the systems’ response turns optimal for some q , 1. Hence, this paper aims to introduce
qNoise generator for C++ at the class level and evaluate the kind of noise it generates, alongside their use in a range of
applications.
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1. Introduction

Most studies on noise-induced phenomena [1, 2] have
assumed the noise source to have Gaussian distribution,
either “white” (memoryless) or “colored” (red, pink, etc
. . . ). Although customarily accepted without criticism
on the basis of the central limit theorem, the true ratio-
nale behind this assumption lies in the possibility of ob-
taining some analytical results, and avoiding many diffi-
culties arising in generating and handling non-Gaussian
noise. There is however experimental evidence that at
least in some cases (particularly in sensory and biologi-
cal systems) non-Gaussian noise sources may add desir-
able features to noise-induced phenomena (e.g. robust-
ness, fault tolerance [3]). These findings add practical
interest to the task of finding viable ways to deal with
non-Gaussian noise.

Here we introduce a lightweight (generic C++ class)
generator for non-Gaussian, colored stochastic pro-
cesses. The expected applications of this algorithm are
as diverse as the modeling of some types of vibration or
fluctuation which are typically non-Gaussian, the gener-
ation of noise which is naturally confined to a domain,

or the investigation of the response of many dynamical
systems embedded in noise, as the latter deviates from
being Gaussian.

The main features of noise obeying Tsallis’ statis-
tics are summarized in Sec. 2; section 3 is devoted to
the description of the software architecture and proper-
ties; section 4, provides statistical analysis of the gen-
erated noise in the qualitatively different cases, along-
side a discussion on the q-dependence of the variance
and effective self-correlation time. The measured self-
correlation times of the obtained series are compared
with a fitting expression [4]. In Sec. 5, a brief review is
provided on related work, namely where non-Gaussian
noise-induced phenomena have been studied.

2. q-noise with Tsallis’ statistics

The exponentially self-correlated Gaussian noise η(t)
named after Ornstein and Uhlenbeck (OU noise, or
“colored” Gaussian noise) can be dynamically gener-
ated through the differential equation

τ η̇ = −η(t) + ξ(t), (1)
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where ξ(t) is centered Gaussian white noise with vari-
ance D, namely

〈ξ(t)〉 = 0, 〈ξ(t) ξ(t′)〉 = 2D δ(t − t′).

This way, η’s self-correlation time is τ.
A straightforward generalization of Eq. (1) was pro-

posed by Borland some time ago [5] as a model for cor-
related diffusion:

τ η̇ = −
d
dη

Vq(η) + ξ(t) (2)

where the potential Vq is given by:

Vq(η) =
D

τ (q − 1)
ln

[
1 +

τ (q − 1)
D

η2

2

]
, (3)

As much as the OU noise allows to explore spectral ef-
fects within the class of exponentially correlated noise,
this generalization provides moreover a device to ex-
plore statistics effects by varying just one parameter
(namely q, at constant τ and D).

The stationary properties of η (including its autocor-
relation function) are thoroughly described elsewhere
[4, 6, 7, 8, 9], we here summarize the main results. Us-
ing the Fokker–Planck formalism, one obtains the sta-
tionary probability distribution

Pst
q (η) =

1
Zq

[
1 +

τ (q − 1)
D

η2

2

] 1
1−q

, (4)

which can be normalized only for q < 3 (Zq is a normal-
ization factor). The first moment 〈η〉 always vanishes
[4, 6, 7, 8, 9] and the second moment,

〈η2〉 =
2D

τ (5 − 3q)
, (5)

is finite only for q < 5/3.
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Figure 1: Stationary q-noise pdf for 0 < q < 1 (dotted line), q =

1 (bold line) and 1 < q < 1.6 (single line). The right panel show
the same plot in semilogarithmic scale. Notice the pdf is compact-
supported for q < 1, Gaussian for q = 1 and fat-tailed for q > 1.

Some properties of the noise are summarized in Fig.
1. The bold line depicts the Gaussian limit (q = 1).

Curves of weaker full lines show that for q > 1, the
second moment is larger than the Gaussian limit D/τ.
For q < 1 (dotted lines) the distribution has a cut-off

and is only defined for

|η| < ηc ≡

√
2D

τ (1 − q)
. (6)

Same distributions are shown in linear and semilogarith-
mic scales (Fig. 1, left and right panels respectively).

The autocorrelation time τq of the process η(t) in its
stationary regime, also diverges for→ 5/3 ≈ 1.66. Far
from its divergence point, it can be approximated as in
[4]:

τq ≈
2τ

5 − 3q
. (7)

When q → 1, η becomes a Gaussian colored noise,
namely the Ornstein–Uhlenbeck process ξOU(t), with
correlations

〈ξOU(t) ξOU(t′)〉 =
D
τ

exp
(
−
|t − t′|
τ

)
, (8)

and probability distribution

Pst(ξOU) = Z−1 exp
− τD ξ2

OU

2

 . (9)

2.1. τ and 〈η2〉 dependence on q

Equations Eqs. (5) and (7) tell us that for q , 1, 〈η2〉

and τq do not attain their values (D and τ respectively)
in a normal distribution. Rather, they both diverge at
q = 5/3 (white squares in both panels of Fig. 2). It is
however desirable to have a generator able to approxi-
mately keep constant the characteristics of these proper-
ties with respect of q, at least sufficiently far away from
the divergence point. This can be very useful to study
the effects of the statistics due to changes in q keeping τ
and variance constant.

This way an effective τq and 〈η2〉 can be defined by
dividing τ by Eq. (7) before integration and 〈η2〉 by Eq.
(5) after integration. The filled circles in both panels of
Figure 2 show this dependence for both τ and 〈η2〉, and
how the system becomes independent of q for the range
0 < q < 1.5 approximately. For q > 1.5, the proximity
to the divergence point q = 5/3 (shown with a dotted
line) makes this approximation fail.
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Figure 2: (Left) Dependence of τ on q. The white squares show the
measured dependence, fitted by Eq. (7) (full line). The black dots
show the behavior of an effective τ in order to make it independent of
q. (Right) Equivalently for the variance of the noise, using Eq. (5).

3. Generator <class> Description

The noise generator [10] is implemented in C++ as
class, with dependencies on standard libraries only.
It generates random numbers using functions in the
built-in <random> class. The generator provides func-
tions for Gaussian white noise, Gaussian colored noise
(Orstein-Uhlenbeck), and two versions of non-Gaussian
non-white noise. One where τ and 〈η2〉 depend on q (as
in Eqs. 5 and 7) and a normalized version where this
effect has been counterbalanced to the first order, suffi-
ciently far away from q = 5/3 (as shown as black dots
in figure 2). This batch of functions would facilitate
modeling a wide variety of scenarios and is suitable for
many applications, some of which are detailed in the
last section of this paper. By default, the tool uses the
Mersenne-Twister generator [11] which provides a very
long (219937 − 1) pseudo-random number cycle. Hence
it is advised to seed the generator only once to avoid
spurious correlations.

3.1. Functions
The class implements four public member functions

as shown in Fig. 3.

qNoise

- q : double

- τ : double

+ gaussWN () : double 
+ orsUhl (x : double, τ : double, H : double) : double 
+ qNoise (eta , τ , q  , H , sqrt_H <optional> : double) : double 
+ qNoiseNorm (eta , τ , q  , H , sqrt_H <optional> : double) : double 

Figure 3: Class diagram of qNoise illustrating the four implemented
functions.

The first function is a wrapper for the normal distribu-
tion, implemented in the <random> standard library. It

is presented as a function of this class for convenience.

The second function is an implementation of the
Orstein-Uhlenbeck noise. It accepts three parameters.
The previous value of the noise (since it is a Markov
process), the autocorrelation time τ of the noise and the
integration time H (necessary for setting the adequate
timescale of the noise).

The third function implements the q-noise distribu-
tion. It accepts the same variables as the orsUhl func-
tion in addition to q (the noise statistics), and sqrt H as
an optional variable. If H is constant, explicitly setting
sqrt H = H1/2 will avoid its calculation every time the
function is called. A snippet of the function is shown in
Listing 1 below.

Finally, the fourth function is a wrapper for the third
function. Here τ is given by Equation (7) and the re-
sulting noise is divided using Eq. (5) in order to coun-
terbalance the dependence of both τ and the variance of
the noise on q. See section 2.1 for an analysis of this
effect and a discussion about its range of validity.

1 #include <qNoise.h>

2 qNoise(eta, tau, q, H, sqrt(H) = -1)

3 # parsed η, τ, q,H,H1/2, else − 1
4 {

5 double kHeun, lHeun, V;

6 int outBound = 0;

7 //calculate H1/2 if not parsed.

8 if (sqrt_H < 0)

9 sqrt_H = sqrt(H);

10

11 //The cut value for q < 1, see Eq. 6.

12 double etaCut = 1 / sqrt(tau * (1 -

q));↪→

13

14 # integrate

15 while (1) {

16 // Aux. 1st Heun's method step - see

Eq.2.↪→

17 kHeun = H * potQNoisePrime(eta,

tau, q);↪→

18

19 // Aux. H1/2 ∗ randNorm(generator)/τ -

2nd Heun's method step.↪→

20 lHeun = sqrt_H *

randNorm(generator) / tau;↪→

21

22 // Solve Differential [V] Equation.

23 V = -H / 2 * (potQNoisePrime(eta,

tau, q)↪→
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24 + potQNoisePrime(eta +

kHeun + lHeun, tau,

q)) + lHeun;

↪→

↪→

1 # For q < 1:

2 /*

3 Check system inside boundary given in Eq.

6.↪→

4 - If η + η′ is outside the bounds,

5 try f or 10 times.

6 - If still out of bounds, update η with

7 OU noise, try another 10 times.

8 */

9 if ((fabs(eta + V) > etaCut) || isnan(eta

+ D)) {↪→

10 outBound++;

11 if (outBound > 20) {

12 return eta/fabs(eta) *

etaCut(0.9 + 0.1 *

uniform(generator));

↪→

↪→

13 }

14 if (outBound > 10) {

15 eta = etaCut * orsUhl(eta,

tau, H);↪→

16

17 } else {

18 return eta + V;

19 }

20 }

21 }

Listing 1: qNoise() pseudocode: integrates a differential
equation using the Heun Method. For q = 1, returned noise
behaves like OU noise, for q < 1, noise not defined outside
(+/- etaCut) and for q > 1, noise statistics become supra-
Gaussian. Access to complete code and documentation [10].

A generic unit test results are shown in Fig. 4. The
test compares the generated average noise, of an ensem-
ble of 10 qNoise runs for each set of q, τ and N, with
the expected distribution of noise. As expected, only
when N is relatively small does the generated noise de-
viate from its theoretical distribution, particularly for
high τ. That is, it takes longer (higher N) for a highly
correlated noise (high τ) to explore the support and ap-
proximate the PDF.

3.2. Seeding

The presented class enables seeding the random num-
ber generator in two functions:
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Figure 4: Accuracy of the histogram of the noise (calculated as the
square root of square’s sum of the difference of the generated noise’
histogram and the theoretical distribution

√∑
x(h(x) − pd f (x))2).

This shows the accuracy of the generated noise — note its dependency
of N and its relative independence of q.

1 void seedTimer ()

2 void seedManual (unsigned UserSeed)

Timer seeding is provided as the default setting for
random number generator, and it is done automatically.
For lightweight single-threaded runs, manual seeding is
not required. However, in multi-threading settings man-
ual seeding (call seedManual) for each thread is rec-
ommended.

4. Properties of the generated noise

Bounded domain (q < 1)

Bounded-domain noise is widespread in nature, and
has multiple applications for modeling and control [9]1.
The infra-Gaussian noise considered here can be ad-
dressed as a small deviation from Gaussianity, allowing
a perturbative approach (Fig 5). In Sec. 5.1, an example
of a infra-Gaussian noise is shown, in a resonant trap.
Another use is as a source of noise whose distribution is
quasi-normal but identically zero outside a boundary.

The noise generator algorithm does also ensure that
noise domain is bounded, checking for out-of-bound
values. This necessary test (especially for highly cor-
related noise) is implemented and documented accord-
ingly in the provided source code.
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Figure 5: q-noise for q = 0.7) (bounded domain), and integration step
h = 0.01. The top panels show a sample of the generated noise, for
(left) τ = 1s and (right) τ = 100s. Notice that in the right figure
the noise is not centered around zero as it is performing a very long
excursion (larger than the sample) given its very high autocorrelation.
Both histograms in the bottom panels show the same data, concurring
with the sample on top-left. (τ = 1s). Although in the linear histogram
on the left it cannot be clearly seen, the semi-logarithmic plot on the
right clearly show the bounded domain. The curve of dotted points
shows the theoretical distribution as in Fig. 1 for the same parameters,
which perfectly concurs with the histogram of the data.

Gaussian case (q = 1)
The Gaussian case behaves exactly as an Orstein-

Uhlenbeck noise, concurring perfectly with it for the
whole range of τ (Fig 6). As shown in the introduction,
the limit q→ 1 recovers the Gaussian noise, and all lim-
its converge to it, see Eqs. (5)-(9). This limit allows to
explore regions arbitrarily near the normal distribution.
It can be used to model small deviations from it due to
some underlying physical phenomenon. As the value
of q can be changed continuously and dynamically, this
scheme also allows to model departures from the nor-
mal distribution due to long time-scale fluctuations, by
slowly varying 1 − ε < q < 1 + ε as a more realistic
model for a small noisy system.

It is not generally recommended to compute the
purely Gaussian case from the general case and set
q = 1, particularly due to potential computational com-
plexity. An extensive batch of tests has been run in
order to compare it to the Orstein-Uhlenbeck noise.
All of the results were successfully recovered. As
presented above, orsUhl, a function for generating

1In practice, physical noise has bounded domain because arbitrar-
ily large fluctuations are strongly suppressed. Nonetheless, Gaussian
noise has many desirable theoretic properties which allow for analyt-
ical results.

Figure 6: q-noise for q = 1) (Gaussian Behavior), and integration step
h = 0.01. The top panels show a sample of the generated noise, for
(left) τ = 1s and (right) τ = 100s. Notice that in the right figure
the noise is not centered around zero as it is performing a very long
excursion (larger than the sample) given its very high autocorrelation
(τ). Both histograms in the bottom panels show the same data, con-
curring with the sample on top-left. (τ = 1s). Although the linear his-
togram on the left shows a bell-shaped distribution, this is not enough
to demonstrate Gaussianity. However that is possible to observe on
the semi-logarithmic, parabolic, plot on the right. The dotted points
show the theoretical distribution as in Fig. 1 for the same parameters,
which perfectly concurs with the histogram of the data.

Orstein-Uhlenbeck noise for a variable τ is included in
this package and its results are equivalent to using the
non-normalized qNoise function for q = 1 at a fraction
of the computation time.

Supra-Gaussian noise (1 < q < 5/3)
The supra-Gaussian (also called fat-tail) noise pre-

sented here is of the class of finite variance. This is
usually an overlooked, modestly studied, class of noise.
The Supra-Gaussian noise, generally considered in lit-
erature, tends to be Lévy-like, where the variance is in-
finite 2.

The noise presented here (Fig 7) is of a finite vari-
ance. The long excursions are however much longer and
much more frequent than in the Gaussian case. This
case is the most commonly used in the applications
of non-Gaussian noise presented below, as it allows to
model many realistic systems outside of equilibrium .

5. Applications

Some applications of the generated noise are shown
below, both as an illustration and to show the potential

2The q-noise presents infinite variance for q > 5/3 but the descrip-
tion of this behavior is outside the scope of this article.
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Figure 7: q-noise for q = 1.3) (supra-Gaussian Behavior), and inte-
gration step h = 0.01. The top panels show a sample of the generated
noise, for (left) τ = 1s and (right) τ = 100s. Notice that in the right
figure the noise is not centered around zero as it is performing a very
long excursion (larger than the sample) given its very high autocor-
relation. Both histograms in the bottom panels show the same data,
concurring with the sample on top-left. (τ = 1s). Although the linear
histogram on the left, showing a bell-shaped distribution, could lead to
suggest Gaussianity, the semi-logarithmic plot on the right, however,
show a supra-Gaussian behavior. The dotted points curve shows the
theoretical distribution as in Fig. 1 for the same parameters concurring
perfectly with the histogram of the data.

of the generator both for research as well as a source of
high quality noise for simulations or experiments (e.g.
in electronics, optics, photosensitive chemical reactions
etc. . . ).

Stochastic resonance

This is a phenomenon occurring in some nonlinear
systems, whereby enhancing the response to a weak ex-
ternal signal may require increasing the noise intensity.
An often resorted-to measure is the signal-to-noise ratio
at the input frequency ω (denoted by R).

The main numerical and theoretical results are [12,
13]: (1) for fixed τ, the maximum R increases with de-
creasing q; (2) for given q, the optimal noise intensity
(the one maximizing R) decreases with q and its value
is approximately independent of τ; (3) for fixed noise
intensity, the optimal value of q is independent of τ and
in general turns out to be qop , 1. A simple stochastic
resonance experiment with a non-Gaussian white noise
[3] confirmed most of these predictions.

Brownian motors

A class of non-equilibrium systems with both po-
tential technological applications and biological inter-
est are the so called “ratchets”, in which the breakdown

of spatial and/or temporal symmetry induces directional
transport. Their transport properties can be studied by
means of the Langevin equation

m
d2x
dt2 = −γ

dx
dt
− V ′(x) − F + ξ(t) + η(t), (10)

with m the particle’s mass, γ the friction constant,
V(x) the (sawtooth-like) ratchet potential, F a con-
stant “load” force, and ξ(t) the thermal noise, satisfying
〈ξ(t)ξ(t′)〉 = 2γTδ(t − t′).

The system is kept out of thermal equilibrium by the
time-correlated forcing η(t) (with zero mean), allowing
to rectify the motion. The q-dependence of the usual
measures of performance has been studied: the mean
current J ≡ 〈dx/dt〉 and the efficiency ε (the ratio of the
work per unit time done against F, to the mean power
injected by η).

In the overdamped regime (m = 0, γ = 1), J is found
to grow monotonically with q whereas ε is maximized
for some 1 < q < 5/3. For m , 0, ratchets ex-
hibit mass-separation capabilities which are enhanced
by non-Gaussian noise [14, 15]. In [16], effects of bi-
ological and technological relevance have been found
in a model for the transport properties of motor pro-
teins when departing from Gaussian behavior: J is max-
imized not only by an optimal noise intensity but also by
an optimal q , 1.

5.1. Resonant gated trapping

Stochastic resonance, which is essentially a threshold
phenomenon, plays also a relevant role in ionic trans-
port through cell membranes. In [17], a “toy model”
considering the simultaneous action of a deterministic
and a stochastic external field on the trapping rate of
a gated imperfect trap, was studied by assuming Tsal-
lis’ noise with q < 1: the bounded character of the
PDF contributed positively to the rate of overcoming the
threshold, and such rate remained at about the same or-
der within a larger range of values than if η had been a
white noise.

Noise-induced transition

A genetic model exhibiting a re-entrance from a dis-
ordered state to an ordered one, and again to a disor-
dered state as τ varies from 0 to ∞ showed moreover
a strong shift in the transition line, as q departed from
q = 1. The transition was anticipated for q > 1, while it
was retarded for q < 1 [18].
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Noise-induced phase transition

In fact fat-tail noise distributions (q > 1) counteract
the effect of self-correlation (namely, they advance the
ordering boundary as D is increased at constant cou-
pling), and compact-support ones (q < 1) enhance it
(they retard the ordering boundary). Particular interest
rises the effect of (q < 1) multiplicative noise on the sus-
ceptibility: it shifts from being larger on the ordering
boundary to being larger on the disordering boundary
[19, 20].

An example of this phenomenon can be found in
climate change. Many climatic “Tipping points” are
are, in fact, noise-induced phase transitions whose forc-
ing them (including astronomic, natural and antro-
pogenic noise) are not necessarily Gaussian. An
“Early Warning”[21] system of tipping points should in-
clude simulation considering the non-gaussianity of the
stochastic forcing.

Broad-spectrum energy harvesting

In piezoelectric energy harvesting from noise, a sys-
tem obeying a square-well potential can strongly profit
from the large correlated excursion occurring for q > 1
[22].

6. Conclusions

A lightweight software is presented that generates a
class of non-Gaussian, colored noise. This noise can be
handily generated during numerical experiments, or fed
to experiments via an interface. The software, along-
side documentation, is provided on the online reposi-
tory Github including examples and unit test results,
with an open source license. Instances of noise-induced
phenomena arising when the system is submitted to
(colored and non-Gaussian) noise sources with Tsal-
lis’ q-statistics, as applications, have been briefly ex-
plored. The above discussed results show that non-
Gaussian noise can significantly change the system’s
response in many noise-induced phenomena, as com-
pared with the Gaussian case. Moreover, in all the
cases presented here, the system’s response was either
enhanced or altered in a relevant way for values of q
departing from Gaussian behavior. In other words, the
optimum response occurred for q , 1. Clearly, the
study of the change in the response of other related
noise-induced phenomena when subjected to such kind
of non-Gaussian noise will be of great interest.
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Birkhäuser, Basel, 2013, pp. 43–58.

[10] J. I. Deza, qNoise: A generator of non-Gaussian colored noise
www.github.com/ignaciodeza/qnoise.

[11] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator, TOMACS 8.1 (1998) 3–30.

[12] M. A. Fuentes, R. Toral, H. S. Wio, Enhancement of stochas-
tic resonance: the role of non Gaussian noises, Physica A 295
(2001) 114–122.

[13] M. A. Fuentes, C. J. Tessone, H. S. Wio, R. Toral, Stochas-
tic resonance in bistable and excitable systems: Effect of non-
Gaussian noises, Fluct. Noise Lett. 3 (2003) L365–L371.

[14] S. Bouzat, H. Wio, Current and efficiency enhancement in
Brownian motors driven by non gaussian noises, Eur. Phys. J.
B 41 (2004) 97–106.

[15] S. Bouzat, H. S. Wio, New aspects on current enhancement in
Brownian motors driven by non-Gaussian noises, Physica A 351
(2005) 69–78.

[16] S. E. Mangioni, H. S. Wio, A random walker on a ratchet po-
tential: effect of a non Gaussian noise, Eur. Phys. J. B 61 (2008)
67–73.

[17] J. A. Revelli, A. D. Sánchez, H. S. Wio, Effect of non-Gaussian
noises on the stochastic resonance-like phenomenon in gated
traps, Physica D 168-169 (2002) 165–170.

[18] H. S. Wio, R. Toral, Effect of non-Gaussian noise sources in a
noise-induced transition, Physica D 193 (2004) 161–168.

[19] R. R. Deza, H. S. Wio, M. A. Fuentes, Noise-induced phase
transitions: Effects of the noises’ statistics and spectrum, AIP
Conf. Proc. 913 (2007) 62–67.

[20] R. R. Deza, M. A. Fuentes, H. S. Wio, Effects of the noises’
statistics and spectrum on noise-induced phase transitions, AIP
Conf. Proc. 922 (2007) 487–490.

7



[21] T. M. Lenton, Early warning of climate tipping points, Nature
Climate Change 1 (4) (2011) 201–209.

[22] J. I. Deza, R. R. Deza, H. S. Wio, Wide-spectrum energy har-
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