ARM stacks

Stacks on ARM processors

The stack may be accessed in several ways; Empty Descending (ED), Empty Ascending (EA), Full Descending (FD) and Full Ascending (FA). The way the stack pointer changes and the item it points to on the stack will be slightly different in each case. As diagrams these four different ways of accessing the stack are shown below.

[image: image1]

The push and pop operations are store many and load many op codes, the assumption being that a function will need to save and restore the contents of several registers that it is likely to corrupt (of course it is possible to deal with just one register!). When a list of registers is given the lowest numbered register uses the lowest stack memory location and the highest numbered register uses the highest stack memory location. This is true no matter what order we specify the registers! The important thing is to remember whether the stack pointer is altered pre- or post- before the multiple registers are dealt with!

e.g.

stmfd sp!, {fp,ip,lr,pc} @ full descending so pre-

 @ decrement sp then copy pc,

 @ lr, ip, fp to stack,

 @ leaving sp pointing to the

 @ stacked fp value

stmfd sp!, {r5} @ pre-decrment sp, copy r5 to stack,

 @ leaving sp pointing to stacked r5 value

ldmea fp, {fp,sp,lr} @ empty ascending so pre-decrement sp

 @ then copy fp, sp and lr from stack

 @ Note no exclamation mark (!)

ldmfd sp!, {r5} @ copy item from stack then increment sp

@ leaving sp pointing to the original item

Use of the stack in ARM C/Assembler programming.

Assume a C function calls an assembler routine with four parameters. These will be passed in registers r0 to r3. If the routine uses other registers, such as r4, these must be stacked before being used and retrieved after use before the routine returns to the calling function.

Assume also that the function has two local variables. These must be catered for on the stack within the function’s stack frame.

Remember that the default use of the stack is Full Descending, so the stack pointer will point to the last item stacked by the calling function.

The assembler function might begin and end as follows:

start:

mov
ip, sp

@ basically save the current sp

stmfd sp!, {fp,ip,lr,pc}
@ save important regs.

sub
fp, ip, #4

@ initialize the frame pointer

sub
sp, sp, #8

@ allow stack space for 2 local vars

strmfd sp!, {r6,r4,r5}
@ stack regs we corrupt (note we!)

@ do the rather important work

ldmfd
sp!, {r5,r6,r4}
@ retrieve values for corrupted regs

ldmea
fp, {fp,sp,pc}
@ reset fp and sp, jump to return addr

end:

Note that the ARM assembler performs sequential (many) transfers in increasing memory address order i.e. from low to high addresses, so ‘decrementing’ transfers actually decrement the base register (e.g. fp) first then increment it to get the correct register position in the sequence!

How do the multiple store and load instructions work?
The single “store multiple” instruction:
stmfd sp!, {fp, ip, lr, pc}
Can be replaced by these four instructions:
str pc, [sp, #-4]!

str lr, [sp, #-4]!

str ip, [sp, #-4]!

str fp, [sp, #-4]!

The stmfd (“store multiple, full descending”) instruction stores the registers listed between braces “{” and “}” (in this case, FP, IP, LR and PC) to memory pointed to by the first operand, called the base register (in this case, SP). The “!” indicates the base register is modified at the end of storing all of the registers.

The easiest way to understand all this is to look at what the instruction does:
1. Subtract 4 × number of registers listed from the base register. In this case, SP = SP – 4×4.
2. Store the listed registers to memory in ascending order: the lowest-numbered register is stored at the address pointed to by the base register (using its new value), the next-lowest- numbered register at the next word in memory, and so on. Note that listing the registers in a different order will have no effect!
In this case, the base register is SP. Hence, register FP (R11) is stored at [SP], register IP (R12) at [SP + 4], register LR (R14) at [SP + 8] and register PC (R15) at [SP + 12].

The single “load multiple” instruction:
ldmea fp, {fp, sp, pc}
Can be replaced by:

mov ip, fp

ldr fp, [ip, #-12]

ldr sp, [ip, #-8]

ldr pc, [ip, #-4]

References

Programming Techniques:

Section 7.2.1 Interfacing C and Assembly Language, pp 7-4 and 7-5.

Section 4.8 ARM Assembly Language Basics, pp 4-23, 4-24 and 4-25.

Section 5.2.5 Exploring ARM Assembly Language, pp 5-6 and 5-7.

Full Descending

Full posn

SP

0

-12

-8

-4

Descending

High

Last stacked

Low

Stack

Empty Descending

Empty posn.

SP

-8

-4

0

Descending

High

Last stacked

Low

Stack

Empty Descending (ED)

Push: put value on stack then decrement sp – post-decrement, e.g. stmed.

Pop: increment sp then copy item from stack – pre-increment, e.g. ldmed.

Full descending (FD) – The System Default!

Push: decrement sp then put item on stack – pre-decrement, e.g. stmfd.

Pop: copy item from stack then increment sp – post-increment, e.g. ldmfd.

Last stacked

Low

Stack

SP

Empty

+8

0

+4

High

Ascending

Empty Ascending

Full Ascending

Ascending

High

+8

+4

0

Full

SP

Stack

Low

Last stacked

Empty Ascending (EA)

Push: put item on stack then increment sp – post-increment, e.g. stmea.

Pop: decrement sp then copy item from stack, e.g. ldmea.

Full Ascending (FA)

Push: increment sp then put item on stack, e.g. stmfa.

Pop: copy item from stack then decrement sp – post-decrement, e.g. ldmfa.

Page 4 of 4

